Relaxation by Modified Logarithmic Barrier Applied to the Problem of Optimal Power Flow DC with Overload

27-28 April, 2015 - Campinas, Brazil

Mayk Coelho Aurelio R. L. Oliveira Anésio dos Santos Júnior

771249:

Rinding of the second s

Initial Notivatión

- Numerical problems in Interior Point Methods;
- Overload problems in Optimal Power Flow;

Interior Points Nethods

- Path Following Primal-Dual Method
- Classical Logarithmic Barrier;
 - Good results for optimal power flow problems;
 - Numerical problems when very close to the border;
 - Ill-Conditioned;

Nodel of DC Optimal Power > Flow by Network Flow

 $\min \quad \frac{\alpha}{2} f^{t} Rf + \frac{\beta}{2} (p^{t} Qp + c^{t} p)$ $Af \quad = \quad Ep - l$ $Xf \quad = \quad 0$ $f_{l} \quad \leq f \leq \quad f_{u}$ $p_{l} \quad \leq p \leq \quad p_{u}$

Model of DC Optimal Power Flow by Network Flow

Change of variables and add slack variables.

$$\min \quad \alpha(\frac{1}{2}f^{t}Rf + c_{f}^{t}f) + \beta(\frac{1}{2}p^{t}Qp + c_{p}^{t}p) \\ Bf - \hat{E}p = \hat{l} \\ f + s_{f} = f_{u} \\ p + s_{p} = p_{u} \\ (f, p, s_{f}, s_{p}) \geq 0 \\ B = \begin{bmatrix} A \\ X \end{bmatrix}, \ \hat{E} = \begin{bmatrix} E \\ 0 \end{bmatrix}, \ \hat{l} = \begin{bmatrix} l^{a} \\ l^{b} \end{bmatrix}$$

Lagrangean Function:

$$\mathcal{L} = \varphi(f, p, s_f, s_p) - \mu \sum_{x \in \mathcal{P}} \ln(x_i) - y^t (\widehat{l} - Bf + \widehat{E}p) - w_f^t (f_u - f - s_f) - w_p^t (p_u - p - s_p)$$

$$\varphi(f, p, s_f, s_p) = \alpha(\frac{1}{2}f^t Rf + c_f^t f) + \beta(\frac{1}{2}p^t Qp + c_p^t p)$$

Applying PN

Optimality Conditions (KKT):

Primal Feasibility:

Dual Feasibility:

Complementarity:

$$Bf - \widehat{E}p = \widehat{l}$$

$$f + s_f = f_u ;$$

$$p + s_p = p_u$$

$$B^t y - w_f + z_f - \alpha Rf = \alpha c_f$$

$$-\widehat{E}^t y - w_p + z_p - \beta Qp = \beta c_p ;$$

$$FZ_f e = \mu e$$

$$PZ_p e = \mu e$$

$$S_f W_f e = \mu e$$

$$S_p W_p e = \mu e$$

$$FEEC$$

Elétrica e de Computaçã

Unitals

Applying LPN

Where $J_{\mathcal{L}}$ is a Jacobian Matrix, d is a vector of Newton's directions and r is a residual vector.

Normal eration

System IEEE 30

Computational Specifications

• CPU: $Intel^{\textcircled{o}} Core^{TM}$ i7-2670QM CPU 2.20GHz × 8;

Ital

NormalOperation

	Dispatches						
Generator	Tl (MW)	Gc (MW)	Tl & Gc (MW)				
1	30.00	30.00	30.00				
2	50.00	50.00	50.00				
5	70.00	61.70	61.80				
8	70.00	61.70	61.60				
11	26.15	40.00	40.00				
13	37.25	40.00	40.00				
	8 iterations	8 iterations	8 iterations				

	Lagrange Multipliers w_p						
Generator	Tl (U\$/MW)	Gc (U\$/MW)	Tl& Gc (U\$/MW)				
1	7.92×10^{-2}	2.17×10^2	2.16×10^2				
2	4.11×10^{-1}	$1.97 imes 10^2$	1.97×10^2				
5	$9.53 imes10^{-1}$	$2.65 imes 10^{-4}$	$2.61 imes 10^{-4}$				
8	2.10×10^{-1}	$2.65 imes 10^{-4}$	2.55×10^{-4}				
11	3.47×10^{-8}	168×10^2	1.66×10^2				
13	2.53×10^{-7}	$1.68 imes 10^2$	$1.66 imes 10^2$				

But, how this method behaves in overload situation?

If the demand is greater than the load?

or

If transmission lines are unable to transmit the load?

Unifal

overload Situation

Reducing generator 1: 30MW → 10MW
 Demand: 283.4MW → Capacity 280MW

		Lagrange Multipliers w_p				
Generator	Dispatch (MW)	Tl (U\$)	Gc (U\$)	Tl & Gc (U\$)		
1	10.00	1.06×10^{15}	3.79×10^{11}	8.40×10^{14}		
2	50.00	$1.06 imes 10^{15}$	3.79×10^{11}	$8.40 imes 10^{14}$		
5	70.00	$1.06 imes10^{15}$	$3.79 imes10^{11}$	$8.40 imes10^{14}$		
8	70.00	$1.06 imes10^{15}$	$3.79 imes 10^{11}$	$8.40 imes10^{14}$		
11	40.00	$1.06 imes 10^{15}$	$3.79 imes 10^{11}$	8.40×10^{14}		
13	40.00	$1.06 imes 10^{15}$	3.79×10^{11}	8.40×10^{14}		

Overload Situation

- Overloads ⇒ Numerical Erros;
- There may be no feasible solution;

- Allows violations in some constraints;
 - In practice, it is possible for a short time;
 - Many cases may be now solved;

Allow Overloads \Rightarrow Relax Constraints ;

$$s_p \geq -\delta_p^{-1}$$
$$s_f \geq -\delta_f^{-1}$$

 $\Rightarrow p > p_u$ and $f > f_u$ if necessary.

This relaxation does not satisfy the condition for the classical logarithmic barrier;

Modified logarithmic barrier

Proposed by Polyak in LP and nLP;

Minimize: Subject to:

$$g_i(x) \ge 0, \quad i = 1, 2, ..., m$$
$$x \in \Omega = \{x \in R^n | g_i(x) \ge 0\}$$

$$\mathcal{M}_{\mathcal{L}}(x,\pi) = \begin{cases} f(x) - \frac{1}{\delta} \sum_{i=1}^{m} \pi_{i} \ln(\delta g_{i}(x) + 1) &, \text{ se } x \in \Omega_{\delta} \\ & \infty &, \text{ se } x \notin \Omega_{\delta}. \end{cases}$$

$$\Omega_{\delta} = \{ x | \delta g_i(x) + 1 \ge 0 \}.$$

f(r)

t to infeasible points to Ω, but not to Ω_{δ} ; ater δ , smaller the expansion Ω_{δ} ;

Existence Condition:

 $g_i(x) \ge -\delta^{-1}$

- May get to infeasible points to Ω , but not to Ω_{δ} ;
- The greater δ , smaller the expansion Ω_{δ} ;

Applying the Method

- Short Term Operational Capacity;
 - Generator: Maximum Overload 10%;
 - Transmission Line: Maximum Overload 30%;
- It can be viewed as a relaxation operational limits;

Applying in Optimal Power Flow DC Problem

 $min \qquad \alpha(\frac{1}{2}f^tRf + c_f^tf) + \beta(\frac{1}{2}p^tQp + c_p^tp)$

$$Bf - \widehat{E}p = \widehat{l}$$

$$f + s_f = f_u$$

$$p + s_p = p_u$$

$$(f, s_f) \ge -\delta_f^{-1}e_f$$

$$(p, s_p) \ge -\delta_p^{-1}e_p$$

Lagrangean Function:

 $\mathcal{L} = \varphi(f, p, s_f, s_p) - \delta_x^{-1} \sum_{x \in \mathcal{P}} \phi(x, \pi_x, \delta_x) - y^t (\widehat{l} - Bf + \widehat{E}p) - w_{sf}^t (f_u - f - s_f) - w_{sp}^t (p_u - p - s_p)$ $\varphi(f, p, s_f, s_p) = \alpha (\frac{1}{2} f^t Rf + c_f^t f) + \beta (\frac{1}{2} p^t Qp + c_p^t p)$ $\phi(x, \pi_x, \delta_x) = \sum_{i \in I} \pi_{xi} ln(\delta_x x_i + 1)$

Applying in Problem of Optimal Power Flow DC

Optimality Conditions

Primal Feasibility

Dual Feasibility

Complementarity

$$\begin{array}{rcl} Bf - \hat{E}p &=& \hat{l} \\ f + s_f &=& f_u \\ p + s_p &=& p_u \\ -\alpha Rf + B^t y + z_f - w_{sf} &=& \alpha c_f \\ -\beta Qp - \hat{E}^t y + z_p - w_{sp} &=& \beta c_p \\ \delta_f Z_f Fe + z_f &=& \pi_f \\ \delta_p Z_p Pe + z_p &=& \pi_p \\ \delta_f W_{sf} S_f e + w_{sf} &=& \pi_{sf} \\ \delta_p W_{sp} S_p e + w_{sp} &=& \pi_{sp} \end{array}$$

 $\begin{array}{c} \hline \textbf{CNPq} & \hline \textbf{FAPESP} \end{array} z_{xi} = \frac{\pi_{xi}}{(\delta_x x_i + 1)}, x \in \{f, p\} \text{ e } i \in I \\ \hline \textbf{Constitute of tecnologies} \end{array}$

Applying in Optimal Power Flow DC Problem

Where $J_{\mathcal{L}}$ is a Jacobian Matrix, d is a vector of Newton's directions and r is a residual vector.

Normal Operation

		Dispatch						
	Generator	tor Tl (M		Gc (MW))	Tl & Gc (N	4W)	
	1		30.00	30.00		30.00	30.00	
	2		50.00	50.00		50.00		
	5		70.00	61.70		61.80		
	8		70.00	61.70		61.60		
	11		26.15	40.00		40.00		
	13		37.25	40.00		40.00		
		8	iterations	11 iteration	1S	11 iteratio	ons	
				Dispatche	s			
Before	Gener	ator	Tl (MW)	Gc (MW)	Tl	& Gc (MW)		
	1		30.00	30.00		30.00		
	2		50.00	50.00		50.00		
	5		70.00	61.70		61.80		
	8		70.00	61.70		61.60		
	11		26.15	40.00		40.00		
	13		37.25	40.00		40.00		
			8 iterations	8 iterations	5	8 iterations		

Normal Operation

			1						
			Lagrange Multipliers w_p						
	Gener	ator	Tl (U\$/MW)		Gc (U\$/MW	7) TI & Gc (U\$/MW)			
	1		7.9	92×10^{-2}	2.17×10^{2}	2.16×10^{2}			
	2		4.1	11×10^{-1}	$1.97 imes 10^2$	1.97×10^{2}			
	5		9.5	53×10^{-1}	$4.61 imes 10^-$	8 4.81 × 10 ⁻⁸			
	8 2.1		10×10^{-1}	$4.61 imes 10^-$	8 4.48 × 10 ⁻⁸				
	11		2.3	39×10^{-15}	$1.68 imes 10^2$	$1.66 imes 10^2$			
	13	3	5.70×10^{-10}		1.68×10^2	1.66×10^2			
	-			L	Lagrange Multipliers w_p				
Beto	re	Gener	ator	Tl (U\$/MW)	Gc (U\$/MW)	Tl& Gc (U\$/MW)			
	-	1		7.92×10^{-2}	2.17×10^2	2.16×10^{2}			
		2		4.11×10^{-1}	1.97×10^2	1.97×10^2			
		5		$9.53 imes 10^{-1}$	$2.65 imes 10^{-4}$	2.61×10^{-4}			
		8		2.10×10^{-1}	2.65×10^{-4}	2.55×10^{-4}			
	11		3.47×10^{-8}	168×10^{2}	1.66×10^{2}				
		13		2.53×10^{-7}	1.68×10^{2}	1.66×10^{2}			

Overload Situation

Reducing generator 1: 30MW → 10MW
 Demand: 283.4MW → Capacity 280MW

- Maximum Overloads:
 - in each Generator: 10%;
 - In each Transmission Line: 30%.

Overload Situation-Generation

	STATION IN CONTRACT			Dispatch		
Generator	Tl (MW)	Overload(%)	Gc (MW)	Overload(%)	Tl & Gc (MW)	Overload(%)
1	10.69	6.86	10.02	0.17	10.00	0.00
2	50.45	0.91	50.02	0.03	50.00	0.00
5	70.27	0.38	69.77	0.00	71.80	2.57
8	70.73	1.05	69.77	0.00	71.59	2.28
11	40.36	0.91	41.82	4.55	40.01	0.01
13	40.90	2.24	42.00	5.00	40.00	0.00
	8 ite	erations	23 it	erations	21 itera	ations

	Lagrange Multipliers w_p						
Generator	Tl (U\$/MW)	Gc (U\$/MW)	Tl & Gc (U\$/MW)				
1	4.69	1.69×10^2	2.77×10^{2}				
2	4.78	2.29×10^2	$2.37 imes 10^2$				
5	5.27	$2.61 imes 10^{-4}$	$1.00 imes 10^{-3}$				
8	4.43	2.97×10^{-4}	2.79×10^{-4}				
11	3.74	1.95×10^2	2.06×10^2				
13	4.09	$1.95 imes 10^2$	2.06×10^2				

FEEC Faculdade de Engenharia Elétrica e de Computação

Unifal

Overload Situation transmission line

Contingency on the line 2-5:

- Violation of generators : 0%;
- Violation of lines: Max 30%

Overload Situation transmission line

Dispatch:

Gerador	Perdas na Transmissão (Pt)	Custo na Geração (Cg)	Ponderação (Pt & Cg)
1	30.00	30.00	30.00
2	33.51	50.00	50.00
5	70.00	70.00	70.00
8	70.00	53.40	53.40
11	39.89	40.00	40.00
13	40.00	40.00	40.00
	18 iterações	17 iterações	17 iterações
	$F_{obj} = 82.37u.m$	$F_{obj} = 20404.15u.m$	$F_{obj} = 20484.50u.m$

- Predicting where overload will occur and their intensity;
- Operate with overloads safely;
- Restructuration Planning or System Expansion;

Future Prospects

- Improvements to choice of parameters of barrier
- Studies on costs of violations;
- Predictor-Corrector method;
- Problems for Pre-Dispatch;
 - With maneuvers lines;
 - Constraints Ramp;

The End

Thank you for Attention!!!!!
